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Two new approaches for writing kinetic equations in the matrix form or directly in 
the integrated form are presented here. While the first method allows to derive the kinetic 
rate matrix of kinetic systems of any kind in a direct and straightforward way, the second 
approach applies to species that are consumed solely through first order steps, regardless 
of the complexity of their formation pathways. 

1. I n t r o d u c t i o n  

The evaluation of the kinetic rate constants and order of a given reaction scheme 
is usually done by fitting the experimental results with the integrated kinetic equa- 
tion. For  this reason, an important  part of the literature on chemical kinetics is 
focused on the integration of the corresponding rate laws, which are differential 
equations [1-4]. Normally,  this topic consists in studying the fate of  a specific 
reagent or product  for several specific cases, that is, first-order, first-order oppos- 
ing or reversible and consecutive, second-order, second-order reversible, etc. This 
"state of  the art" gives the impression of a lack of unity and leaves the feeling that  
each case is somewhat unique. 

The use of  matrices in chemistry and chemical engineering allows the formula- 
tion of  chemical models in an elegant and compact way. Nevertheless, the integra- 
tion of  kinetic rate equations is frequently presented without recourse to matrix 
algebra. The matrix formulation of the rate equations (a set of interconnected dif- 
ferential equations, one for the concentration time variation of each species) is par- 
ticularly convenient since it allows the integration of the rate equations, using a 
uniform set of procedures. In addition, the time evolution of the concentrations of  
all species (reagents, products and intermediates) is obtained simultaneously. This 
topic is only briefly treated in basic texts on chemical kinetics and mathematics for 
chemistry [5-7], and has been recently reconsidered and further developed by dif- 
ferent authors [8-11]. This fact does not  limit the definition of a set of  rules that can 
help with the formulation of the rate matrix K in a direct way. Furthermore,  
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numerical methods based on the same matrix approach can be used to solve the gen- 
eral case of  kinetic systems composed by steps of any order. Analogous formalisms, 
based on matrices, find many other applications in chemistry and chemical engi- 
neering, namely in quantum chemistry (secular equation), spectroscopy (molecular 
vibrations) and chemical graph theory. 

The second part  of  the paper is devoted to the convolution approach that  allows 
to write kinetic equations directly in the integrated form. However, this approach is 
limited to kinetic schemes composed of first-order or pseudo first-order elementary 
steps [ 12-18]. The method has been recently used for the analysis of  complex photo- 
chemical kinetic systems [13,17]. 

2. The matrix m e t h o d  

The first order K matrix 

The construction of a first-order rate matrix K starts by considering three species 
(but it can easily be generalized to any number of species) A, B and C that take part 
in a first- or pseudo first-order chemical kinetic process that can be described by the 
following 3 x 3 square matrix (this matrix is normally the transpose o fa  mathema- 
tical matrix): 

- --kAA kBA kcA ] 
kAB --kB~ kcB | = K,  (1) 

I 

kAc kBc -kcc J 

where the minus sign along the main diagonal means that along that path species 
undergo chemical consumption, while ku  terms are the rate constants for reactions, 
,-- 1 4 ,  that  is, for reactions departing from reactant I and kij cross-terms are the 
reaction rate constants of the process I ---, J. Thus, while kaB and kBA are the rate 
constants of  A ~ B and B ---, A reactions respectively, kAA is the sum of the rate 
constants ofA ~ B and A ~ C reactions. These K matrices have two properties [9] 
(replacing kij with the corresponding ki and k - i  terms) that help to check their valid- 
ity: (i) the sum of  terms along a column is always zero as the term on the main diago- 
nal is the negative sum of the terms along the respective column and (ii) for 
reversible reactions the terms on the symmetric sides of  the main diagonal differ 
from each other in their direction (normally indicated by i and - i  or f, forward and 
r, reverse). The rate equation can, thus, be written in the following succinct way 
(where dC/dt = C'): 

C' = K C .  (2) 

Let us now apply the given rules to construct the K matrices for some reaction 
schemes. 
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Consecutivefirst-order reactions." A ~ B ~ C 

Here we have kAA = kAs = kl 
the K matrix will, then, be 

- i l  0 
1 -k2 

k2 

0 

0 = K .  

0 

and kss  = k sc  = k2 and the remnants kii = O, 

(3) 

We notice that while rule 1 is obeyed, rule 2 fails, as the reaction is not reversible. 

k_l k-2 k-3 
Opposing first-order consecutive reactions: A ~ B ~ C ~ D 

kl k2 k3 

Here, kAA = kAs = kl,  ksA = k-l ,  ksB = (k-1 q- k2), kBc = k2, kcB = k-2, 
k c c  = (k-2 -t- k3), kcD = k3, kDc = kDD = k-3, while the restant kii = 0. As there 
are four species, the rate matrix is a 4 x 4 matrix: 

-11 k-1 0 0 
kl - ( k - l + k 2 )  k-2 0 

k2 - ( k - 2 + k 3 )  k-3 

0 k3 -k-3  

= K .  (4) 

It is easily seen that, here, rules 1 and 2 are fully respected. 

Solution o f  a first-order consecutive reaction scheme 

Kinetic systems composed by unimolecular steps only, the first-order matrices 
of which do not exceed a 3 x 3 dimension, are amenable to a rather easy closed form 
solution by the aid of the matrix eigenvalue method [5,10,11]. Let us take the case of 
the two-step consecutive scheme (see the preceding paragraph) and the correspond- 
ing K rate matrix. The C I = KC matrix equation, where C = (A I, B', C') and 
C = (A, B, C), has the following general solution: 

C = K2 .exp(At) (5) 

K3 

with C' = AC. By the aid of this solution, eq. (2) leads us to the following matrix 
eigenvalue problem: 

AC = K C ,  (6) 

since ),C = AIC, where I is a unit matrix: 
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(K - AI)C = 0. (7) 

For  non-trivial solutions to this equation to exist, the determinant D = IK - AI I 
must  be zero• The solution for D = 0 yields the eigenvalues A1 = 0, A2 = - k l  and 
A3 = - k 2 .  

The C1, C2 and C3 eigenvectors belonging to these eigenvalues are calculated 
f r o m  

0 0jill] 
kl - (k2  - ~) 0 K2 = 0 (8) 

0 k2 -/k K3 

and have the following form (Ak = k2 - kl and L, M and N are three non-zero con- 
stants): 

C1 ~--~ , C2~--- 

M 

Mkl / Ak 
-M k2 /Ak  

• e x p ( - k l t ) ,  Ca = -exp( -k2 t ) .  

(9) 

The general solution of the consecutive reaction scheme involving only irreversible 
first-order steps is then the following linear combination of the three independent  
eigenvectors C1, C2 and Ca: 

[ ! ]  [ Mexp(-k l t )  
C = = Mkl exp( -k l t ) /Ak+ Nexp(-k2t) 

L - Mk2 exp( -k l  t ) /Ak - N exp(-k2  t) 

(10) 

With the aid of  the initial conditions, CA(O) = Ao, C8(0) = Bo and Cc(O) = Co 
and with S = A0 + B0 + Co, we obtain 

A = A0 exp( -k l  t), (10a) 

k~Ao 
B - ~ (exp( -k l t )  + [BoAk - Aokl] exp(-k2t )} ,  (10b) 

C = S -  ~ {Aok2 exp( -k l t )  - [ B o A k -  Aokl] exp(-k2t )} ,  (10c) 

where for t --~ cxz we obtain, as expected, A = B = 0 and Cc = S. 

The second-order K matrix 

Rules for the construction of  first-order rate matrices can be applied, with small 
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modifications,  to construct  pure second-order rate matrices with two reactants (A 
and B) and two products  (C and D). Modifications are due to the introduct ion of  
the (Ck) n-1 concentrat ion term (where n = 2) that  multiplies with the ki: rate 
constant:  

--kAA CB kBA CA kcA CD kD~ Cc ] 

kAsCs -kssCA kcBCD kDBCC [ 
kAcCB kscCA - - kccCD kDcCc [ 

kAoCs kBDCA kCDCD --kDDCC J 

= K .  (11) 

The subscript k of  the concentrat ion term shows an inverted internal order, that  
is, k = B, A, D, C relatively to the concentrat ion vector C = (CA, Cs, Cc, Co). This 
matr ix  can be converted into a first order rate matr ix noticing that  for n = 1: 
(C) n-1 = 1, Cc = CD = 0 and kic = kid = 0. The given matrix can be simplified in 
two steps: (1) as there is no internal reaction between reactants or products  (that is, 
A and C do not  result f rom B and D, respectively, and vice versa) we have 
kAn = kBA = kcD = kDc = 0; consequently, (2) as the third and four th  terms in the 
first and second rows as well as the first and second term in the third and fourth 
rows are redundant ,  one of  them can be eliminated. These redundancies can be 
easily detected by simply looking for terms in a row [9] (excluding the terms in the 
main  diagonal) that  differ f rom each other by an internal exchange of  reactants or  
products  (namely, by an internal exchange of  subscripts). The resulting matrix will 
then have the following form: 

--kAA CB 0 0 kD~t Cc ] 
! 

0 --kBBCA kcBCD 0̂  ] = K .  (12) 

0 kBcCA -kccCD O l 
ka D Ca 0 0 - kD~o Cc 

Here, the elimination of  redundancies has been done in order  to obtain a matr ix  
that  obeys rules 1 and 2 as well as that  " looks nice". With the given method  to con- 
struct 2nd and, consequently, 1 st order matrices it is now possible to construct  rate 
matrices of  complex kinetic mechanisms composed of  1 st and 2nd order reaction 
steps, such as 

k-t k-2 
A__~ B___~ C, 

kl k2 

Ak_~3D, 

D + B - ~ E ,  
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k_5 
E ~ A + D .  

ks 

After elimination of redundancies (last row: first k-5 Co term and k4 CB in the fourth 
term) we obtain the following rate matrix [9,11]: 

-(kl  + k3 q- k-sCD) k-i 0 0 

kl - (k-1 + k2 + k4CD) k-z 0 
0 k2 -k -2  0 

k 3 0 0 - ( k 4 C B q - k _ 5 C A )  

0 k4 Co 0 k-5 CA 

k5 

0 

0 = K .  

k5 

-k5 

(13) 

Clearly, such mixed order matrices do not obey rules 1 and 2. 
The concentration vector here is C = (CA, CB, Cc, Co, CE). The solution of this 

kinetic problem is rather formidable and approximations (such as the steady-state 
or pre-equilibrium approximations) or, even better, numerical methods (such as 
Euler's or Runge-Kutta's method) have to be invoked to find a solution of the 
kinetic problem [11, and references therein]. Euler's method, valid also for the time 
dependent K (t) (with k = k(t)) matrices, solves the matrix equation 

C' = K( t )C ,  (14) 

approximating C' = dC/dt by AC/At  

AC/At  = [C(t + At) - C(t)]/At = K(t)C(t) ; (15) 

hence (U being the unit matrix of order n), 

C(t + At) = [U + K(t)At]C(t). (16) 

Repeated applications of eq. (16) (with constant or variable time increment At), 
assuming C(0) to be known, allows the calculation of the concentration of every 
species at any instant. 

In the Runge-Kutta method, which offers a better accuracy, the step is subdi- 
vided and K(t) is computed at selected points in each subinterval. An approximate 
formula is used to calculate C(t) for each step. For a differential equation of the 
form dy/dx = f(x,  y) the Runge-Kutta method of the fourth order gives 

y(x + Ax) = y(x) + At/6(Cl + 2c2 + 2c3 + c4) (17) 

with c l=f (x ,y ) ,  c z = f ( x + A x / 2 ,  y+cl/2),  c3=f(xq-Ax/2 ,  yq-c2/2), 
c4 = f ( x  + Ax, y + c3). The method can be extended to solve matrix equation (14), 
giving in a compact form 

C ( / +  At) = D(t)C(t) ,  (18) 
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where D(t) is a sum of matrices 

D(t) = U + At/6[K(t) + 2K1 (t)P(t) + 2K2(t)Q(t) + K3(t)R(t)] 

with 

P(t) = U + K ( t )  At /2 ,  Q(t) = U + K I ( t ) P ( t )  At /2 ,  

R(t) = U +K2(t)Q(t)  At.  

The Ki are the K matrices evaluated at different points of the interval, namely, 

(19) 

(20) 

Kl( t )  = K(P(t )C(t ) ) ,  K2(t) = K(Q(t)C(t)) ,  K3 = K(R(t )C( t ) ) .  (21) 

Knowing matrix K(t) and the interval At, the D(t) matrix can be evaluated using 
eqs. (20) and (21). Once D(t) is known at a given instant t the value ofC( t  + At) is 
calculated with the aid of eq. (18). Successive applications of this equation allow 
the calculation of the time dependence of the concentration of all species. 

Construction of  other types of  rate matrices 

The second-order matrix (11) can be used as a starting point for the construction 
of other types of matrices such as matrices of second-order steps with stoichio- 
metric coefficients ui ¢ 1 or matrices of autocatalytic steps and, clearly, the corre- 
sponding matrices of mixed reaction steps. 

If in matrix (12) we substitute subscripts D with C, we obtain 

--kAA CB 0 0 kCA Cc 

0 --kBBCA kcsCc 0 

0 kscCA - k c c C c  0 

kAcCs 0 0 - k c c C c  

= K .  (22) 

Now, (i) adding the fourth column to the third one and eliminating it, (ii) adding 
the fourth row to the third one and eliminating it, and (iii) eliminating, successively, 
the redundant term in the third row (there is a redundancy between the first and sec- 
ond terms of this row), we obtain the rate matrix of the following elementary step 
with stoichiometric coefficient uc = 2: 

A +B--~2C 

--kAA CB 0 

0 -kBBCA 

kAcCB 0 

kca Cc" 

kcnCc 

- 2 k c c C c  

= K .  ( 2 3 )  
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Thus, one way to construct rate matrices of reaction steps with nonunitary stoichio- 
metric is: (1) to expand, by the aid of dummy species, the dimension space of the 
reaction into a space where no equal species are present and (2) to reduce it back to 
the normal dimension of the reaction operating on the columns and rows of the 
dummy species. This process, introduced to handle matrices of autocatalytic reac- 
tion steps [8], strongly reminds one of the simplex method for solving linear pro- 
gramming problems. 

The construction of a rate matrix of the autocatalytic step (ks: forward direction, 
k_l: reverse direction), 

k-i 
A+B--~ 2A, 

kl 

starts with matrix (12) where k;j of the dummy reaction scheme 

A +B---~C+D 

have been substituted by the corresponding kl and k-i  to prevent errors during 
the handling of the matrix 

o o 

- k l  CA k-1 Co 0 

kl CA -k-1 Co 0 

L ks CB 0 0 - k - i  Cc 

= K .  (24) 

Now, by (i) replacing the subscripts C and D by subscript A, (ii) adding the third 
and fourth columns to the first column and eliminating it, (iii) adding the result- 
ing third and fourth rows to the first row and eliminating it, we obtain 

-k-lCA k l C A  ] = K ,  (27) 
k-lCA -k1CAJ 

that is, the rate matrix (with no redundant terms) of the given autocatalytic step 
that obeys rules 1 and 2. The concentration vector associated with this matrix is 
c = (CA, CB). 

The considered processes that allow to start with a general 2nd order K matrix 
and derive specific K matrices of the same or lower order can be applied to an nth 
order K matrix to derive any matrices of lower order, rendering, thus, the method 
quite general. The same matrix formalism, with minor changes, can also be applied 
to derive kinetic K matrices in open systems (in continuous flow stirred tank reac- 
tor: CSTR) [9]. In this case two new terms have to be added in each term of the main 
diagonal: ~A and DIV 2, where q5 is the flow rate, A is the subtracting operator, that 
is, AA = A0 - A (A0 being the concentration of the input flow), Dz is the diffusion 
coefficient of species I and V 2 is the laplacian operator. 
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3. The c o n v o l u t i o n  m e t h o d  

Macroscopic chemical kinetics is based on differential equations of the type 

dCi/dt = ~ (dCi/dt)k , (28) 
k=in,out,pro,con 

which are simple balances for the amount of species Ci (i = A, B, . . . )  within the sys- 
tem. The sum runs over the four main processes occurring in a chemical reaction: in 
standing for input, out for output, pro for internal production and con for internal 
consumption; the first two processes are relevant for open systems and the last two 
are associated with the chemical reactions occurring in the system. 

Comparison with experimental data is usually done in the integrated form, that 
is, the system of differential equations (28) is integrated, analytically or numeri- 
cally, and the resulting time functions Ci(t) then compared with the experimental 
ones, in order to extract rate constants or even to test the proposed mechanism/ 
kinetic scheme. 

The opposite procedure is also possible, i.e., numerical differentiation of experi- 
mental data followed by direct comparison with the system of differential equa- 
tions (28) (e.g., method of the initial rates). For a number of reasons, which include 
the amplification of the experimental error, this is a much less common procedure. 
A general discussion of the advantages and limitations of the differential and inte- 
gral methods is given by Laidler [2]. More recently, Steel and Razi Naqvi [15] stud- 
ied the differential method in great detail. 

The integration of system (28) can be done using several mathematical tech- 
niques, including matrix methods [8-13 and this review]. However, when all the 
consumption rates (i.e. the out and con terms in eq. (28)) are of first order (or 
pseudo-first order) there is a straightforward but little known way to write down 
the balances directly in the integrated form. The method, based on the concept of 
convolution, is being increasingly used in photochemical kinetics [13 and references 
therein]. 

Suppose that a reactive chemical species Ci can be instantaneously produced 
at unit concentration at time t = 0: ignoring the possibility of reformation of Ci 

via closed loops (e.g. a reversible step), its time evolution will be given by a 
certain function Cie(t). This function is the response to a unit input of Ci at time 
zero, that is, to a Dirac's delta function 6(t), and reflects all possible disappear- 
ance routes for Ci (Fig. 1). It is, in general, a function of the concentration of Ci 
and of the concentration of the other species Cj (] ~ i). However, under first- 
order or pseudo first-order conditions, this function is independent of all concen- 
trations, 

Ci,(t) = exp ( - ~ ko.t) , (29) 
J 
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Fig. 1. The possible disappearance routes for Ci. 

where kij are strict first- or pseudo first-order rate constants of the elementary steps 
by which C/disappears. Now the general time evolution for Ci is given by the con- 
volution integral 

~0 t Ci( l  ) = e i ( o ) f i 6 ( t  - O)dO = e i  @ Ci6, (30) 

where Pi(t) is the rate of production of Ci. This production rate includes all steps 
that generate Ci, either internal or external, and arising or not from closed loops. 
Eq. (30) is the fundamental equation of the convolution approach and can be 
understood on the basis of Fig. 2. The total concentration of C~ at a given instant t 
will be the sum of all delta responses C~6 weighted by the respective initial amount 
produced, Pi(O), and taking into account that a time lapse t - 0 has passed since 
that particular creation process. 

Taking the time derivative ofeq. (30) yields [13], of course, the usual differential 
balance 

dCi/dt= P i -  ( ~ k i j ) C i ,  (31) 

this being the proof of the equivalence of the differential and convolution 
(integral) approaches. 

For a given kinetic problem, the full solution in terms of the convolution 
approach is obtained in four steps: 

(1) identification of the delta responses Cie(t); 
(2) identification of the production terms Pi( t); 
(3) writing of the system of coupled (through the Pi's) integral equations 

Ci = P i ®  C i 6 ( i =  A , B , . . . ) ;  
(4) solution of the system of coupled equations, e.g. by the use of Laplace transfor- 

mation theory. 
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---7 

S 
S 
× 

: 01 = 02 _ 

P(t) 

%N %, 

'x ",C~ i~(t -021 

", xCi~lt-011 " . ,  

Fig. 2. The time evolution of the total concentration Ci at a given instant t (see text). 

Some particular cases of interest will now be discussed. 

Consecutive first-order reactions 

Consider the simple consecutive mechanism 

and let the initial concentrations of A, B and C be A0, 0 and 0, respectively. The time 
evolution of  A, B and C in response to 6-production of  each are dictated by their 
routes of  disappearance, 

A6(t) = e x p ( - k l t ) ,  

B6(t) = exp( -k2 t ) ,  

c~( t )  = 1. 

On the other hand, the production rates are 

Pa = Ao6(t), 

(32) 

(33) 

(34) 

(35) 
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Pn = k l A ,  

P c  = k l B ,  

Now, the direct use ofeq. (30) yields 

A = PA @ Ae(t)  = Ao6(t)  @ exp(-kl  t) = Ao exp(-kl  t), 

B = k l A  @ Be(t) = k lAo  exp(-kl t )  ® exp(-k2t) ,  

C = k z B  ® C6(t) = k lk2Ao exp(-kl  t) N exp(-k2t) @ 1. 

(36) 

(37) 

(38) 

(39) 

(40) 
From the definition of convolution and by performing the convolution integrals, 
one obtains with Ak = k2 - kl 

exp(-kl  t) ® exp(-k2t) = {exp(-kl t )  - -  exp(-k2 t)} (41) 
Ak 

and, by making kl = 0 and knowing that convolution obeys the commutativity 
property, 

exp(-k2t) ® 1 = 1 - exp(-k2t) (42) 
k2 

so that 

exp(-kl t )  @ exp(-k2t) ® 1 = ~ {exp(-kl t) ® 1 - exp(-kl  t) @ exp(-k2t)},  

(43) 

hence 

A = A0 exp(-kl  t), (44) 

B = Aokl  {exp(-klt)  - exp(-k2t)} (45) 
Ak 

C = A o { 1 -  e x p ( - k l t )  - k l [ e x p ( - k l t )  - e xp ( - k2 t ) ]  . (46) 

Note that for non-zero initial concentrations of B and C the treatment is identi- 
cal, but the respective production rates are added with a term similar to eq. (35), 
e.g. for non-zero B one has PB = Bo6(t) + k l A .  Eqs. (44)-(46) are well known but 
were obtained here without solving any differential equations. 

Reversible f i rs t -order  reactions 

Consider now the scheme 
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kl 
A ~ B .  

k2 

The 6-production responses are, as before, 

A6(t) = exp( -k l t ) ,  (47) 

B6(t) = exp(-k2t) ,  

and the production rates are 

PA = Ao~5(t) + k2B, 

(48) 

(49) 

PB ----- Bo6(t) + k lA  . 

Combining eqs. (47)-(50) one obtains 

A = A0 exp(-kl  t) + k2B ® exp(-kl  t), 

(50) 

(51) 

B = B0 exp(-k2t) + k lA  ® exp(-k2t).  (52) 

The time evolutions of A and B are not independent, as eqs. (51) and (52) are 
coupled. Their separation is easily done by the use of Laplace transforms. Knowing 
that the Laplace transform of the convolution productf  ® g is the product of indi- 
vidual Laplace transforms, i .e . , f  ® g = j ~ ,  that the Laplace transform is a linear 
operator and that the transform ofa exp(-bt) is a/(s + b), one gets 

A--  A° k2 ~/~ (53) 
~+k~ + ~ - - ~  , 

_ B o  + kl ~ .  
s + k~ s + k2 

This algebraic system is solved to yield with k = kl + k2 

A o ( k 2 +  kl '~ k 2 ( 1  1 ) 
= T  ~ + k } + B ° T  s s + k  ' 

(54) 

(55) 

T s + 7 - ~  + A°-k- s s + k  

After Laplace inversion, one finally obtains 

A = - ~  [k2 + kl exp(-kt)] + Bo [1 - exp(-k t ) ] ,  

(56) 

(57) 

B0 [kl B = --~ + k2 exp(-kt)] + Ao: [1 - exp(-kt)] (58) 
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Again, eqs. (57) and (58), already obtained with the matrix eigenvalue method 
[10], are well known but were obtained without solving differential equations. 

Kinetics in open systems 

The previous reasoning applies equally well to open systems. In fact, input flow 
of reactants from the outside is incorporated in the production terms whereas out- 
put flow of both reactants and products affects only the 6-responses. Consider a 
constant volume ideal continuous flow stirred tank reactor (CSTR) where reaction 

occurs, no A being initially present in the reactor. A flow of A solution, with concen- 
tration A0, enters the reactor (which has a constant volume V) at a constant volume 
rate (I,. The output flow has also the same volume rate, (I,. Then, 

A6(t) = exp{-(k  + 9 /V) t} .  (59) 

Also, assuming instantaneous mixing, 

PA = Ao~/V,  (60) 

and for product B 

B6(t) = exp(-cbt/V),  (61) 

Ps = kA, (62) 

hence, 

• {(o)} 
A = A 0 - ~ ® e x p  - k + ~  t , (63) 

( -~t) = k A o ~ ® e x p { - ( k + ~ ) t } ® e x p ( - ~ t )  B = kA ® exp \ 

(64) 

or, finally, 

A0 A -  ~k+~ [1 - e x p  { - ( k + ~ ) t } ]  , (65) 

kAo IV (1 _ exp { 1 (exp 

- exp { - ( k + ~ ) t } ) ]  . (66) 
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Note that non-zero steady-state concentrations of A and B are attained for long 
times, as expected. The time evolution of A and B in an Open system of the type 
A + C ~ B, with reactant C = Co = const, being absent from input 'flow, is 
described by eqs. (65) and (66) but with the inclusion of a term Co that multiplies 
with k. 

Mechan i sms  with bimolecular e lementary steps 

Complex kinetic schemes frequently contain bimolecular steps. If these cannot 
be assumed to be of first order, the present approach is not applicable to the species 
that decay by those steps. Even then, the convolution approach may be of some 
interest. Consider for instance the scheme, whose solutions are already complex 
[51, 

A k-~2D k3 ----~ g .  

Species A and B cannot in general be handled by the present approach, as they 
participate in a bimolecular step. But species C, D and E can still be related with A 
and B by this approach. From the above enunciated rules, one can write directly the 
following integral relations between concentrations: 

C = ( k lAB)  @ 1, (67) 

D = (k2A) @ exp(-k3t) ,  (68) 

E = ( k 3 D )  ® 1 = k2k3A ® exp(-k3t) @ 1. (69) 

Integral relations of this type may be of importance for the experimental determi- 
nation of rate constants. For example, if the time evolutions are known from 
experiment, the rate coefficients can be written as 

C _ C(t)  (70) 
kl - (AB) ® 1 Jo A(u)B(u)du  ' 

E( t )  _ E(t)  (71) 
k3 - 19 ® 1 Jo 19(uleu ' 

D(t)  _ D(t)  

k2 = A  ® exp( -k3 t ) - -A  ® e x p [ - E ( t ) t /  fo D(u)du] " 
(72) 

As far as the authors are aware, this method has never been used for the calculation 
of rate constants. 



208 L. Pogliani et al. / Matrix and convolution methods in chemical kinetics 

Fluorescence quenching 

Consider the following scheme for fluorescence quenching in solution: 

A + huP-,A * , 

A * r A ,  

,-, kq( t )  , 
A * + ~ g ~  a + Q ,  

where the molecule A after being electronically excited by photon absorption with 
a production rate P (related to the incident photon intensity) decays with intrinsic 
lifetime "r = 1/P owing to the unimolecular radiative and nonradiative processes 
and also by a bimolecular quenching process with rate coefficient kq(t). The 
quencher concentration is usually much larger than that of excited molecules A* 
but if the quenching process is diffusion controlled, the rate coefficient is time 
dependent and to a good approximation given by the Smoluchowski equation 
[16] 

[ kq6(t) = 47rDNARe 1 + = a + - ~  , 

where D is the sum of the diffusion coefficients of A* and Q, NA is the Avogadro's 
number and Re the encounter radius (Re = rA. + rQ), the quenching reaction being 
supposed to occur instantaneously. This time-dependence at early times results 
from the reaction of pairs of molecules (A*, Q) that are in close proximity and react 
very fast. After time t > R2e/rcD, a stationary distribution of quenchers around the 
excited molecules has built up owing to molecular diffusion, and the quenching rate 
coefficient attains a stationary value given by 

kq6(Oo) = 47rDNARe. (74) 

The time evolution of A*, after 6-production, is (see eq. (29)) 

(I '  ) A} = exp(-Pt)  exp - kqe(u)du (75) 

and for a general production rate P(t) 

J0 A* = P ® A*~ = P(t  - 0) exp{-(r '0 + aQO + 2bQ01/2)} dO. (76) 

A photostationary concentration of A*, Ass is expected for long times when the 
production rate is constant. This stationary concentration is given in the limit 
t ~ cx~ for a constant production term, Po, 
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with 

Ass = lim A*(t) = P0r(1 - v/-~Aexp(A 2) erfc(A)) 
t--,oo 1 + aTQ (77) 

A = aTQRe 
V/Tr(1 + aTQ)'rD 

and erfc(x) is the complementary error function 
x 

erfc(x) = 1 - - ~  exp(-za) dz, 

a photostationary rate constant kq,ss can be defined by 

( ) ( v/-~Aexp(A 2) e r f c ( A ) ) /  1 P0  _ p = a +  

kq,ss = O  A s---~s 07- 
(1 - v@Aexp(A 2) erfc(A)). 

(78) 

(79) 

(8o) 

This being different from the long time limit of the time dependent quenching rate 
coefficient kq(t), eq. (74). Indeed, for a general time dependent rate constant k(t), it 
can be shown [17,18], that the correct time dependent rate coefficient is given by 

P ® 
k ( t ) -  p ® A 6  ' (81) 

where k6(t) is the rate constant for delta production and A6(t) the respective time 
evolution of A (see eqs. (29) and (75)). From this equation, the steady-state rate 
coefficient is obtained as 

kss = f o  k6(t)A6(t)dt 
f ~  A6(t)dt (82) 

This is an alternative way for the calculation ofeq. (80). 

4 .  C o n c l u s i o n  

The aim of the present work was to show the interest and range of applicability 
of the matrix and convolution approaches. These two methods find several applica- 
tions in chemical kinetics of complex systems and in photochemical kinetics. The 
mechanical method to construct the rate matrices of any order and complexity 
reduces the task of writing the rate equations, a very tedious and error prone proce- 
dure (for systems with more than 3 reactions), to the level of a recipe. Furthermore, 
the matrix approach allows a general view of the integration of rate equations and 
introduces, for some 1st order K matrices, the possibility to use the eigenvalue 
method for the solution of the kinetic equation with a formalism that is very similar 
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to the one used in quantum chemistry. On the other hand, the convolut ion 
approach allows the writing of  the mole balance equations directly in the integrated 
form, whenever the decay of  a species is effectively of  first order. The examples here 
presented are simple kinetic schemes, whose results are well known. They served, 
however,  to introduce the two approaches and to show their structure and straight- 
forwardness.  

The final system discussed with the convolution approach contained a mixture 
of  unimolecular  and bimolecular steps. In cases like this, all species disappearing 
through first order processes can still be handled by the convolut ion mechanism, 
and this may  allow the direct estimation of  rate constants  or the compar ison 
between experimental and calculated time evolutions. More  complex cases, where 
the rate coefficients are t ime-dependent,  including excimer format ion and radia- 
tionless energy transfer can also be treated by the same formalism, non-trivial 
results being then obtained [13]. 
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